Important Short Tricks on Trigonometric Identities

Important Short Tricks on Trigonometric Identities

Pythagorean Identities
  • sin2 θ + cos2 θ = 1
  • tan2 θ + 1 = sec2 θ
  • cot2 θ + 1 = csc2 θ
Negative of a Function
  • sin (–x) = –sin x
  • cos (–x) = cos x
  • tan (–x) = –tan x
  • csc (–x) = –csc x
  • sec (–x) = sec x
  • cot (–x) = –cot x                                                                                     If A + B = 90o, Then
  • Sin A = Cos B
  • Sin2A + Sin2B = Cos2A + Cos2B = 1
  • Tan A = Cot B
  • Sec A = Csc B
For example:
If tan (x+y) tan (x-y) = 1, then find tan (2x/3)?
Solution:  
Tan A = Cot B, Tan A*Tan B = 1
So, A +B = 90o
(x+y)+(x-y) = 90o, 2x = 90o , x = 45o
Tan (2x/3) = tan 30o = 1/√3
If A – B = 90o, (A › B) Then
  • Sin A = Cos B
  • Cos A = – Sin B
  • Tan A = – Cot B
If A ± B = 180o, then
  • Sin A = Sin B
  • Cos A = – Cos B
If A + B = 180o 
Then, tan A = – tan B
If A – B = 180o
Then, tan A = tan B
For example:
Find the Value of tan 80o + tan 100o ?
Solution:  Since 80 + 100 = 180
Therefore, tan 80o + tan 100o = 1
If A + B + C = 180o, then
Tan A + Tan B +Tan C = Tan A * Tan B *Tan C
sin θ * sin 2θ * sin 4θ = ¼ sin 3θ
cos θ * cos 2θ * cos 4θ = ¼ cos 3θ
For Example: 
What is the value of cos 20o cos 40o cos 60o cos 80o?
Solution: We know cos θ * cos 2θ * cos 4θ = ¼ cos 3θ
Now, (cos 20o cos 40o cos 80o ) cos 60o
¼ (Cos 3*20) * cos 60o
¼ Cos2 60= ¼ * (½)2 = 1/16
If   a sin θ + b cos θ = m &  a cos θ – b sin θ = n
then a2 + b2 = m2 + n2    
                                                          
Sin2 θ, maxima value = 1, minima value = 0
Cos2 θ, maxima value = 1, minima value = 0                                                                                                             BY - ANSAR       www.fidgetacademy.blogspot.in  

Comments

Popular posts from this blog

ADVERBS -PERCENTAGE% ALWAYS -100% USUALLY -90% NORMALLY/GENERALLY -70% OFTEN/FREQUENTLY- -60% SOMETIMES -50% OCCASIONALLY -20% ALWAYS -100% USUALLY -90% NORMALLY/GENERALLY -70% OFTEN/FREQUENTLY- -60% SOMETIMES -50% OCCASIONALLY -20% HARDLY EVER -10% RARELY/ALWAYS MOST -5% NEVER -0% HARDLY EVER -10% RARELY/ALWAYS MOST -5% NEVER -0%