Important Short Tricks on Trigonometric Identities
Important Short Tricks on Trigonometric Identities
Pythagorean Identities
- sin2 θ + cos2 θ = 1
- tan2 θ + 1 = sec2 θ
- cot2 θ + 1 = csc2 θ
Negative of a Function
- sin (–x) = –sin x
- cos (–x) = cos x
- tan (–x) = –tan x
- csc (–x) = –csc x
- sec (–x) = sec x
- cot (–x) = –cot x If A + B = 90o, Then
- Sin A = Cos B
- Sin2A + Sin2B = Cos2A + Cos2B = 1
- Tan A = Cot B
- Sec A = Csc B
For example:
If tan (x+y) tan (x-y) = 1, then find tan (2x/3)?
Solution:
Tan A = Cot B, Tan A*Tan B = 1
So, A +B = 90o
(x+y)+(x-y) = 90o, 2x = 90o , x = 45o
Tan (2x/3) = tan 30o = 1/√3
If A – B = 90o, (A › B) Then
- Sin A = Cos B
- Cos A = – Sin B
- Tan A = – Cot B
If A ± B = 180o, then
- Sin A = Sin B
- Cos A = – Cos B
If A + B = 180o
Then, tan A = – tan B
If A – B = 180o
Then, tan A = tan B
For example:
Find the Value of tan 80o + tan 100o ?
Solution: Since 80 + 100 = 180
Therefore, tan 80o + tan 100o = 1
If A + B + C = 180o, then
Tan A + Tan B +Tan C = Tan A * Tan B *Tan C
sin θ * sin 2θ * sin 4θ = ¼ sin 3θ
cos θ * cos 2θ * cos 4θ = ¼ cos 3θ
For Example:
What is the value of cos 20o cos 40o cos 60o cos 80o?
Solution: We know cos θ * cos 2θ * cos 4θ = ¼ cos 3θ
Now, (cos 20o cos 40o cos 80o ) cos 60o
¼ (Cos 3*20) * cos 60o
¼ Cos2 60o = ¼ * (½)2 = 1/16
If a sin θ + b cos θ = m & a cos θ – b sin θ = n
then a2 + b2 = m2 + n2
Sin2 θ, maxima value = 1, minima value = 0
Comments
Post a Comment